PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 ELECTRICAL CIRCUIT ANALYSIS-II (EEE BRANCH)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.N		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Find the value of RL for maximum power transfer in the circuit of Fig. Find the maximum power.	[7M]	1	
	b)	Obtain the dual network for the following circuit.	[7M]	1	
OR					
2.	a)	Draw incidence matrix and reduced incidence matrix for the given graph.	[7M]	1	
	b)	State and explain compensation theorem with an example.	[7M]	1	
UNIT-II					
3.	a)	Derive the relationship between phase and line voltages and currents in delta connected three phase system and also draw the phasor diagram.	[8M]	2	
	b)	Write the advantages of 3- ϕ circuits over 1- ϕ circuits	[6M]	2	
OR					
4.	a)	Three identical coils, each of resistance 10 ohm and inductance 42 mH are connected (a) in star and (b) in delta to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$, 3-phase supply. Determine the total power dissipated in each case.	[8M]	2	
	b)	Draw \& explain the circuit diagram for two wattmeter methods for measurement of power in 3 phase systems.	[6M]	2	

UNIT-III

UNIT-III					
5.	a)	Derive the Transient Response of series RLC-circuit with D.C excitation	[7M]	3	
	b)	Using classical method of solution of differential equations, find the value of $\mathrm{Vc}(\mathrm{t})$ for $\mathrm{t}>0$ in the circuit shown in figure. Assume $\mathrm{Vc}(0-)=9 \mathrm{v}$.	[7M]	3	
OR					
6.	a)	Derive the Transient Response of series RC-circuit with A.C excitation.	[6M]	3	
	b)	A series RC circuit consists of a resistor of 10Ω and capacitor of 0.1 F with a constant voltage of 20 v , is applied to the circuit at $\mathrm{t}=0$. Obtain the current equation. Determine the voltage across the resistor and the capacitor.	[8M]	3	
UNIT-IV					
7.	a)	Explain about Quality factor and Band-width of Series resonance	[7M]	4	
	b)	In a parallel resonance circuit (Tank circuit) $\mathrm{R}=2 \Omega, \mathrm{~L}=1 \mathrm{mH}$ and $\mathrm{C}=10 \mu \mathrm{~F}$, Find the Resonant frequency, Dynamic impedance and Bandwidth	[7M]	4	
OR					
8.		A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.5 \mathrm{H}$ and $\mathrm{C}=40 \mu \mathrm{~F}$. The applied voltage is 100 V . Find (a) Resonant frequency \& Quality factor of a coil (b) Bandwidth (c) Upper and lower Half power frequencies (d) Current at resonance \& current at half power points (e) Voltage across inductance \& voltage across capacitance at resonance.	[14M]	4	
UNIT-V					
9.	a)	Obtain the transmission line parameters when the two transmission networks having the transmission parameters $\mathrm{A} 1, \mathrm{~B} 1, \mathrm{C} 1, \mathrm{D} 1$ and $\mathrm{A} 2, \mathrm{~B} 2, \mathrm{C} 2, \mathrm{D} 2$ are connected in cascade	[7M]	5	
	b)	The hybrid parameters of a two-port network is shown in figure are, $\mathrm{h} 11=1 \mathrm{~K}$, $\mathrm{h} 12=0.003$, $\mathrm{h} 21=100$ and $\mathrm{h} 22=50 \mu \mathrm{~J}$.Find V2and Z-parameters of the network	[7M]	5	
OR					
10.	a)	Explain about the ABCD -parameters and derive the condition for symmetry and reciprocity.	[7M]	5	
	b)	Express Z parameters in terms of ABCD parameters \& Y parameters	[7M]	5	

