(Common to All Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	Find the orthogonal trajectories of the family of curves $x^2 + y^2 = a^2$.	[2M]	1	2
	b)	Write the application of linear differential equation of second and higher order.	[2M]	2	1
	c)	Find the Laplace Transform of $e^{3t} + 9$.	[2M]	3	2
	d)	Evaluate $L^{-1}\left[\frac{1}{s(s-2)}\right]$.	[2M]	4	2
	e)	State Taylor's series expansion of functions of two variables.	[2M]	5	1

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.N	No.	Questions	Marks	CO	KL
		UNIT-I			
2.	a)	Solve the differential equation of $(1 - x^2)\frac{dy}{dx} + xy = y^3 sin^{-1}x$.	[5M]	1	3
	b)	Find the orthogonal trajectories of the family of cardioids $r = a(1 - \cos \theta)$ where <i>a</i> is the parameter.	[5M]	1	2
		OR			
3.	a)	Solve the differential equation $x^2y dx - (x^3 + y^3)dy = 0$.	[5M]	1	3
	b)	Uranium disintegrates at a rate proportional to the amount present at any	[5M]	1	3
		instant. If M_1 and $\frac{1}{2}M$ grams of uranium that are present at times T and T ₂ respectively. Show that the half-life of uranium is T ₂ -T ₁ .			
	1	UNIT-II	1		
4.	a)	Solve the differential equation $(D^2 + 5D + 4)y = 2 \sin ax$.	[5M]	2	3
	b)	Solve the differential equation $(D^2 + 1)y = \cos x$ by the method of variation of parameters.	[5M]	2	3
		OR	L		
5.	a)	Solve the differential equation $(D^2 + 4)y = e^x \sin^2 x$.	[5M]	2	3
	b)	Solve the differential equation $(D^2 + D + 1)y = x^3$.	[5M]	2	3
	•	UNIT-III		•	
6.	a)	Find $L{f(t)}$ where $f(t) = \begin{cases} \cos(t - \frac{2\pi}{3}) & \text{if } t > \frac{2\pi}{3} \\ 0 & \text{if } t < \frac{2\pi}{3} \end{cases}$.	[5M]	3	2
	b)	Find the Laplace Transform of $f(t) = e^{3t} Sin^2 t$.	[5M]	3	2
		OR			

Code No: P18BST01

)				
	By using the expansion of sin x show that $L(\sin \sqrt{t}) = \frac{\sqrt{\pi}}{2s^{3/2}}e^{\frac{1}{4s}}$.	[10M]	3	3				
UNIT-IV								
a)	Evaluate $L^{-1} \left[\frac{1+e^{-\pi s}}{s^2+1} \right]$.	[5M]	4	2				
b)	Evaluate $L^{-1} \left[\frac{1}{s(s+1)^3} \right]$.	[5M]	4	2				
	OR							
	Solve the differential equation $(D^2 + 3D + 2)y = e^{-t}$, $y(0) = 0$, $y'(0) = 1$	[10M]	4	3				
	using Laplace transform							
	UNIT-V							
a)	Verify Euler's theorem for the function $u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$	[5M]	5	3				
b)	If $u = x^2 - y^2$, $v = 2xy$ where $x = r\cos \alpha$, $y = r\sin \alpha$ then show that $\frac{\partial(u,v)}{\partial(r,\alpha)} = 4r^3$.	[5M]	5	2				
	OR							
	Using Taylor's theorem to expand $f(x, y) = x^2 + xy + y^2$ in powers of x-1 and y-2.	[10M]	5	3				
	b)	UNIT-IVa)Evaluate $L^{-1} [\frac{1+e^{-\pi s}}{s^2+1}]$.b)Evaluate $L^{-1} [\frac{1}{s(s+1)^3}]$.ORUNIT-VUNIT-Va)Verify Euler's theorem for the function $u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$ b)If $u = x^2 - y^2$, $v = 2xy$ where $x = rcos \alpha$, $y = rsin \alpha$ then show that $\frac{\partial(u,v)}{\partial(r,\alpha)} = 4r^3$.ORUsing Taylor's theorem to expand $f(x,y) = x^2 + xy + y^2$ in powers of x -1	UNIT-IVa)Evaluate $L^{-1} [\frac{1+e^{-\pi s}}{s^2+1}]$.[5M]b)Evaluate $L^{-1} [\frac{1}{s(s+1)^3}]$.[5M]ORUNIT-VSolve the differential equation $(D^2 + 3D + 2)y = e^{-t}, y(0) = 0, y'(0) = 1$ UNIT-Va)Verify Euler's theorem for the function $u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$ [5M]b)If $u = x^2 - y^2, v = 2xy$ where $x = rcos \alpha, y = rsin \alpha$ then show that $\frac{\partial(u,v)}{\partial(r,\alpha)} = 4r^3$.[5M]ORUsing Taylor's theorem to expand $f(x, y) = x^2 + xy + y^2$ in powers of x -1	UNIT-IVa)Evaluate $L^{-1} [\frac{1+e^{-\pi s}}{s^2+1}]$.[5M]4b)Evaluate $L^{-1} [\frac{1}{s(s+1)^3}]$.[5M]4ORUNIT-VUNIT-Va)Verify Euler's theorem for the function $u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$ [5M]5ORUNIT-Va)Verify Euler's theorem for the function $u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$ [5M]5ORUsing Taylor's theorem to expand $f(x, y) = x^2 + xy + y^2$ in powers of x-1[10M]5				

R18
