

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

I B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, FEB - 2023 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B)
 PART-A

Answer all the questions in Part-A $(5 X 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1.	a)	Find the orthogonal trajectories of the family of curves $x^{2}+y^{2}=a^{2}$.	$[2 \mathrm{M}]$	1	2
	b)	Write the application of linear differential equation of second and higher order.	$[2 \mathrm{M}]$	2	1
	c)	Find the Laplace Transform of e ${ }^{3 \mathrm{t}}+9$.	$[2 \mathrm{M}]$	3	2
	d)	Evaluate $L^{-1}\left[\frac{1}{s(s-2)}\right]$.	$[2 \mathrm{M}]$	4	2
	e)	State Taylor's series expansion of functions of two variables.	$[2 \mathrm{M}]$	5	1

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Solve the differential equation of $\left(1-x^{2}\right) \frac{d y}{d x}+x y=y^{3} \sin ^{-1} x$.	[5M]	1	3
	b)	Find the orthogonal trajectories of the family of cardioids $r=a(1-\cos \theta)$ where a is the parameter.	[5M]	1	2
OR					
3.	a)	Solve the differential equation $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$	[5M]	1	3
	b)	Uranium disintegrates at a rate proportional to the amount present at any instant. If M_{1} and ${ }^{1}{ }_{2} M$ grams of uranium that are present at times T and $\mathrm{T} \quad 2$ respectively. Show that the half-life of uranium is $\mathrm{T}_{2}-\mathrm{T}_{1}$.	[5M]	1	3
UNIT-II					
4.	a)	Solve the differential equation $\left(D^{2}+5 D+4\right) y=2 \sin a x$.	[5M]	2	3
	b)	Solve the differential equation $\left(D^{2}+1\right) y=\cos x$ by the method of variation of parameters.	[5M]	2	3
OR					
5.	a)	Solve the differential equation $\left(D^{2}+4\right) y=e^{x} \sin ^{2} x$.	[5M]	2	3
	b)	Solve the differential equation $\left(D^{2}+D+1\right) y=x^{3}$.	[5M]	2	3
UNIT-III					
6.	a)	Find $L_{\{ }\{f(t)\}$ where $f(t)=\left\{\begin{array}{c}\cos \left(t-\frac{2 \pi}{3}\right) \text { if } t>\frac{2 \pi}{3} \\ 0 \text { if } t<\frac{2 \pi}{3}\end{array}\right.$.	[5M]	3	2
	b)	Find the Laplace Transform of $f(t)=e^{3 t} \operatorname{Sin}^{2} t$.	[5M]	3	2
OR					

7.		By using the expansion of $\sin \mathrm{x}$ show that $L(\sin \sqrt{t})=\frac{\sqrt{\pi}}{2 s^{3 / 2}} e^{\frac{-1}{4 s}}$.	[10M]	3	3
UNIT-IV					
8.	a)	Evaluate $L^{-1}\left[\frac{1+e^{-\pi s}}{s^{2}+1}\right]$.	[5M]	4	2
	b)	Evaluate $L^{-1}\left[\frac{1}{s(s+1)^{3}}\right]$.	[5M]	4	2
OR					
9.		Solve the differential equation $\left(D^{2}+3 D+2\right) y=e^{-t}, y(0)=0, y^{\prime}(0)=1$ using Laplace transform	[10M]	4	3
UNIT-V					
10.	a)	Verify Euler's theorem for the function $u=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$	[5M]	5	3
	b)	If $u=x^{2}-y^{2}, v=2 x y$ where $x=r \cos \alpha, y=r \sin \alpha$ then show that $\frac{\partial(u, v)}{\partial(r, \alpha)}=4 r^{3}$.	[5M]	5	2
OR					
11.		Using Taylor's theorem to expand $f(x, y)=x^{2}+x y+y^{2}$ in powers of $x-1$ and $y-2$.	[10M]	5	3

Page $\mathbf{3}$ of $\mathbf{2}$

