PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE

 (AUTONOMOUS)
II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 STRENGTH OF MATERIALS-I

Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1	a)	Distinguish between plasticity and elasticity.	$[2 \mathrm{M}]$	1	
	b)	Mention the advantages of continuous beam over simply supported beam.	$[2 \mathrm{M}]$	2	
	c)	Write the theory of simple bending equation.	$[2 \mathrm{M}]$	3	
	d)	Differentiate Double integration and Macaulay's methods	$[2 \mathrm{M}]$	4	
	e)	State Lame's theory.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2		A reinforced concrete column $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ in section is reinforced with 4 steel bars of 2.5 cm diameter, one in each corner. The column is carrying a load of 2000 kN . Find the stresses in the concrete and steel bars. Take modulus of elasticity of steel and concrete as $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and 1.4×10^{4} $\mathrm{N} / \mathrm{mm}^{2}$ respectively.	[10M]	1	
OR					
3	a)	A bar 100 cm in length is subjected to an axial pull, such that the maximum stress is equal to $150 \mathrm{MN} / \mathrm{m}^{2}$. Its area of cross section is $2 \mathrm{~cm}^{2}$ over the length of 95 cm and for the middle 5 cm length is only $1 \mathrm{~cm}^{2}$. If $\mathrm{E}=200$ $\mathrm{GN} / \mathrm{m}^{2}$. Calculate the strain energy stored in the bar.	[5M]	1	
	b)	A steel specimen is $1.5 \mathrm{~cm}^{2}$ in cross section stretches 0.05 mm over 5 cm gauge length under an axial load of 30 kN . Calculate the strain energy stored in the specimen at this point. If the load at the elastic limit for the specimen is 50 kN . Calculate the elongation at the elastic limit.	[5M]	1	
UNIT-II					
4		A cantilever AB of span 6 m is fixed at the end A and propped at the end B. It carries a point load of 50 kN at the mid span. Determine the reactions at the support. Draw the Shear force and Bending moment diagrams.	[10M]	2	
OR					
5		A simply supported beam of length 6 m carries two point loads as shown in figure. Draw the shear force and bending moment diagrams for the beam. Also calculate the maximum bending moment.	[10M]	2	
UNIT-III					

6.	A rolled steel joist of section has the following dimension. Flange width $=$ 250 mm ; Flange thickness $=25 \mathrm{~mm}$ Overall depth $=800 \mathrm{~mm}$; Web thickness $=12 \mathrm{~mm}$ Calculate the safe 'UDL' per meter length of beam, if the beam, if the effective span is 8 m and the maximum stress in steel is $100 \mathrm{~N} / \mathrm{mm}^{2}$.	[10M]	3	
OR				
7.	A rectangular beam 300 mm deep is simply supported over the span of 4 m . Evaluate the uniformly distributed load per metre which the beam may carry, if the bending stress should not exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{I}=8 \times 10^{4} \mathrm{~mm}^{4}$.	[10M]	3	
UNIT-IV				
8.	A 2 m cantilever is loaded with a point load of 500 N at the free end. If the section is rectangular $80 \mathrm{~mm} \times 160 \mathrm{~mm}$ and $\mathrm{E}=10 \mathrm{GN} / \mathrm{m}^{2}$. Calculate the deflection (i) at the free end of the cantilever (ii) at a distance of 0.6 m from the free end, by double integration method.	[10M]	4	
OR				
9.	A simply supported beam of length 4 m carries a point load of 3 kN at a distance of 1 m from each end. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$ for the beam, then using Macaulay's method. Determine: (i) deflection under each load (ii) deflection at the centre.	[10M]	4	
UNIT-V				
10.	A closed cylindrical vessel made of steel plates 4 mm thick with plane ends, carries fluid under pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. The diameter of the cylinder is 25 cm and length is 75 cm . Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change in diameter, length and Volume of the cylinder. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.286$.	[10M]	5	
11.	A pipe of 200 mm internal diameter and 50 mm thickness carries a fluid at a pressure of 10 MPa . Calculate the maximum and minimum intensities of circumferential stress across the section. Also sketch the radial stress distribution and circumferential stress distribution across the section.	[10M]	5	

