PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 FLUID MECHANICS
(CE Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
$\begin{aligned} & \text { PART-A } \\ & \text { Answer all the questions in Part-A }(5 \times 2=10 \mathrm{M})\end{aligned}$

Q.No.		Questions	Marks	CO	KL
1	a)	Differentiate between fluid kinematics and fluid dynamics.	$[2 \mathrm{M}]$	1	
	b)	Distinguish between center of pressure and total pressure force.	$[2 \mathrm{M}]$	2	
	c)	State momentum equation and mention some of its engineering applications.	$[2 \mathrm{M}]$	3	
	d)	Differentiate between hydraulic gradient line and total energy line.	$[2 \mathrm{M}]$	4	
	e)	What do you understand by the terms of boundary layer theory and boundary layer?	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Explain the phenomena of the capillarity. Obtain an expression for capillarity rise of a liquid	[5M]	1	
	b)	The velocity distribution for flow over a flat plate is given by $u=\frac{3}{2} y-y^{3 / 2}$, where u is the point velocity in meter per second at a distance y meter above the plate. Determine the shear stress at $\mathrm{y}=0.2 \mathrm{~m}$. Assume dynamic viscosity 8 poise.	[5M]	1	
OR					
3.		Figure shows a differential manometer connected at two points A and B. At air pressure is $100 \mathrm{kN} / \mathrm{m}^{2}$. Find the absolute pressure at B.	[10M]	1	
UNIT-II					

4.		A circular plate 2.5 m in diameter is submerged in water as shown in figure 1.0 Its greatest and least depths below free surface of water are 3 m and 2 m respectively. Find i).Total pressure on front face of the plate and ii).the position of centre of pressure.	[10M]	2	
OR					
5.	a)	Explain the fallowing teams and give one example each (i). Stream line (ii). Path line (iii). Streak line	[3M]	2	
	b)	The stream function for a two-dimensional flow is given by $\psi=3 x y$, calculate the velocity at the point $P(2,3)$. Find the velocity potential function ϕ	[7M]	2	
UNIT-III					
6.		Derive Euler's equation of motion acting along a stream line. Obtain Bernoulli's equation by its integration. List all assumptions made.	[10M]	3	
OR					
7.		Derive Force exerted by a flowing fluid on a pipe- bend using Impulsemomentum equation	[10M]	3	
UNIT-IV					
8.		Derive an expression for the head loss due to sudden enlargement in pipe flow	[10M]	4	
OR					
9.	a)	What do you mean by pipes in parallel and pipes in series? Why pipes are used in parallel?	[5M]	4	
	b)	An oil of sp.gr. 0.9 is flowing through a pipe of diameter 300 mm at the rate of $500 \mathrm{lit} / \mathrm{sec}$. Find the head lost due to friction required to maintain the flow for a length of 1500 m take γ is 0.3 stokes.	[5M]	4	
UNIT-V					
10.	a)	A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of oil of specific gravity 0.8 . The discharge of oil through venturimeter is 60 liters/s. Find the reading of the oil-mercury differential manometer. Take $\mathrm{C}_{\mathrm{d}}=0.98$.	[6M]	5	
	b)	Explain the fallowing terms briefly i) Vena-contracta ii) Orifice iii) Crest iv) Coefficient of Discharge	[4M]	5	
OR					
11.	a)	Derive an expression for the discharge over a triangular notch in terms of head of water over the crest of the notch	[5M]	5	
	b)	Water flows through a rectangular notch 1.5 m width. The co-efficient of discharge of rectangular notch is 0.6 . If the depth of water over notch is 500 mm , find the discharge over the rectangular notch.	[5M]	5	

